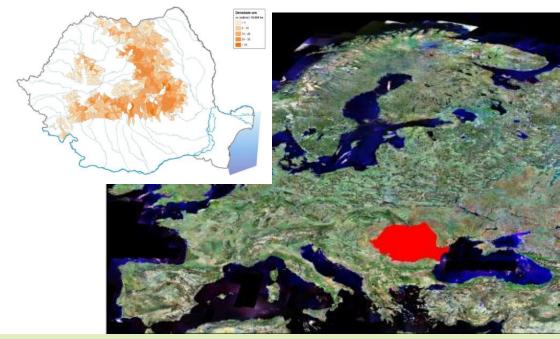


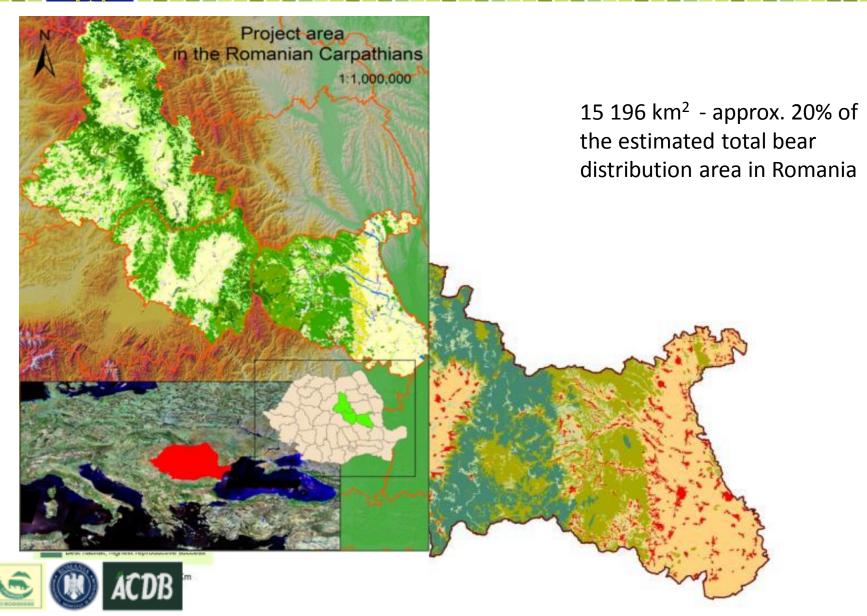
Comparing two techniques for rapid assessment of brown bear abundance in Romania

Ioan Mihai Pop, Viorel D. Popescu, Lajos Berde, Silviu Chiriac LIFE08NAT/RO/000500 – LIFEURSUS project



Bears in Romania

- Species: Brown bear (*Ursus arctos*)
- Distribution area: approx. 69 000 km2
- Population size: approx. 6 000 individuals
- Legal status: protected (since 1997)
- Conservation status: LC (IUCN)



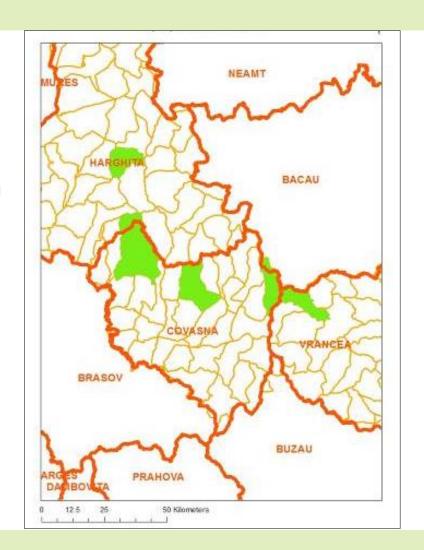
Study Area

Context of the study

- □ high uncertainty around brown bear (*Ursus arctos*) abundance in the Romanian Carpathians,
- □ current estimations of abundance do not rely on modern statistical techniques, and lack uncertainty estimates.

Goal of the study

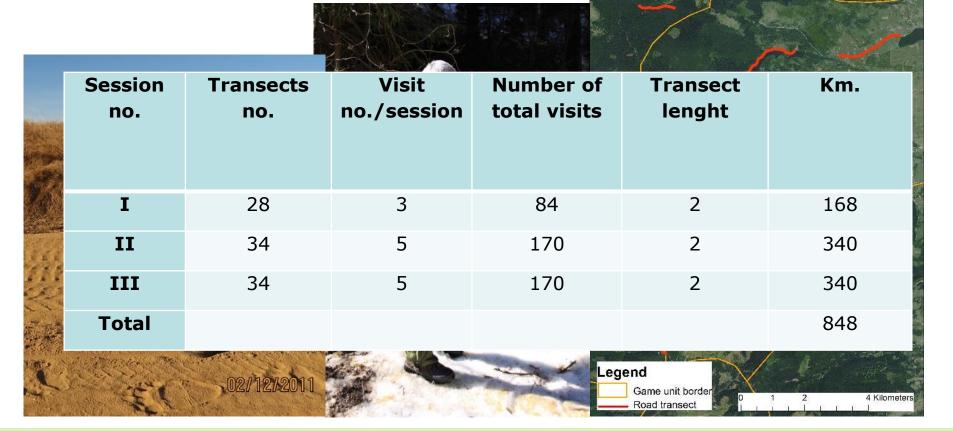
To test the use of two cost-effective sampling techniques for estimating brown bear abundance from unmarked individuals in an occupancy framework.



Study period and Pilot sites

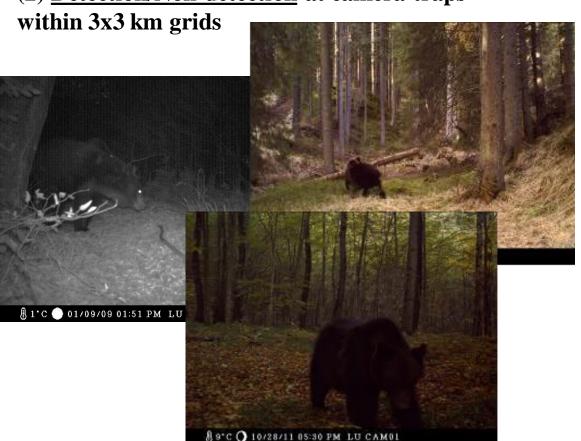
Total surface of the pilot sites 446 sqkm

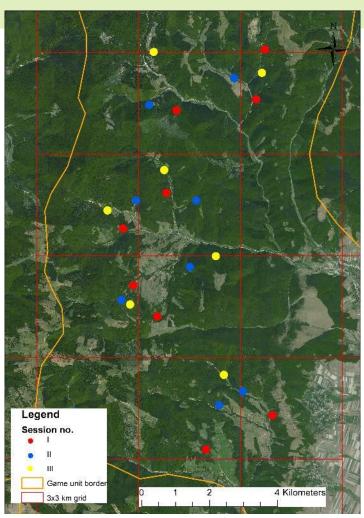
Season 1 -Spring 2011 Season 2 - Fall 2011 Season 3 - Spring 2012



Methodology

(1) <u>Track Counts</u> on 2-km forest road segments





Methodology

 $(2) \ \underline{Detection/Non-detection} \ at \ camera \ traps$

Data Analysis

R 2.15.2 program, package unmarked

- Road transect data "Royle Biometrics" models for count data (Function pcount).
- □ **Camera trap** data "Royle-Nichols" models for binomial data (Function <u>occuRN)</u>

Variables for modeling abundance	Variables for modeling detection	
Hunting Management Unit	Julian Day	Day since January 1st
Altitude	Substrate (RT only)	(mud, snow, dry)
Forest Type	Snow Depth (RT only)	
Percent agricultural lands (CT only)	Forest Type (CT only)	
Percent pasture (CT only)	Slope (CT only)	

Detection history

		Sampling occasions		
Method		Season 1 - Spring	Season 2 - Autumn	Season 3 - Spring
Camera Traps	# Detections	15	22	25
	# Non-Detections	105	98	94
	Detections %	12.5%	18.3%	21.0%
Road transects	# Detections	55	41	87
	# Non-Detections	25	96	94
	Detections %	68.7%	29.9%	48.1%

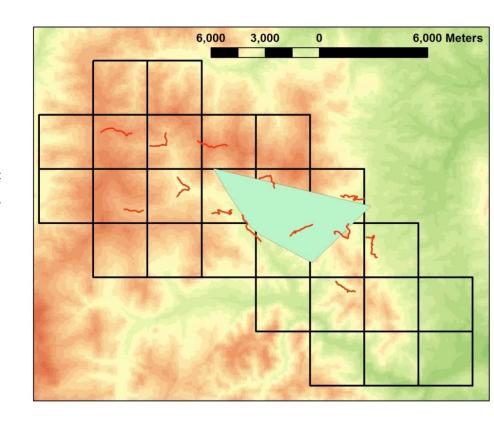
Variables used to model abundance had low explanatory power.

Example: Transect data Season 2

K	ΔAIC	AICwt	CumAICWt	R-squared
5	0.00	0.4908	0.49	0.133
3	1.11	0.2817	0.77	0.000
5	1.77	0.2027	0.98	0.089
4	7.25	0.0130	0.99	0.000
6	8.14	0.0084	1.00	0.000
6	9.93	0.0034	1.00	0.000
	5 3 5 4 6	5 0.00 3 1.11 5 1.77	5 0.00 0.4908 3 1.11 0.2817 5 1.77 0.2027 4 7.25 0.0130 6 8.14 0.0084	5 0.00 0.4908 0.49 3 1.11 0.2817 0.77 5 1.77 0.2027 0.98 4 7.25 0.0130 0.99 6 8.14 0.0084 1.00

Bear abundance per transect/camera trap grid

		Spring 2011	Fall/Winter 2011	Spring 2012
Camera Trap	Mean abundance per camera station 90% Credible Interval	-	1.29 0.40 - 2.97	2.78 0.74 - 5.41
Transect data	Mean abundance per transect	1.34	1.65	1.43
	90% Credible Interval	0.96 - 2.44	0.75 - 3.30	0.88 - 2.56



Inferring bear densities from transect data

Effective sampling area of each transect unknown, BUT we estimated *post hoc:*

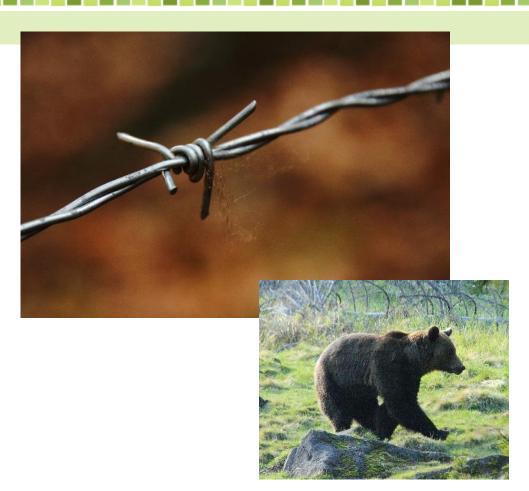
- Seasonal Home Range size from an independent telemetry dataset (10 bears) = 14 ± 2.1 km² (95% CI = 10 − 18 km²) → 1 − 2 grid cells
- There is home range overlap (estimated >1 individual per transect),
- Thus, ADDING UP ABUNDANCES
 PER TRANSECT IS WRONG

Results

ASSUMPTION

Effective sampling area = mean home range size (14 km²)

	Season 1	Season 2	Season 3
Mean abundance per	1.34	1.65	1.43
transect (and 90% CI)	0.96 - 2.44	0.75 - 3.30	0.88 - 2.56
Density per 100 km ²	10 7 - 17	12 5 - 23	10 6 - 18



Conclusion

Preliminary results as a first step

The following step – DNA methods

Thank you!

www.carnivoremari.ro

www.biodiversitate.ro

